
How Practical is Homomorphically Encrypted Program Execution?
An Implementation and Performance Evaluation

Michael Brenner, Henning Perl and Matthew Smith
Distributed Computing Security Group, Leibniz Universität Hannover, Germany

{brenner,perl,smith}@dcsec.uni-hannover.de

Abstract—Homomorphic cryptography has received a lot
of attention due to potentially ground breaking advances
in cryptography. However it is also surrounded by a
lot of hyperbole such as "ground breaking advances",
"this will solve all Cloud computing problems" to "it
is completely impractical" and "it will never work for
real world problems". In previous work we showed how
homomorphic encryption can be used to execute arbitrary
programs in encrypted space, showing that at least in
theory real world problems can be computed protected by
homomorphic cryptography without losing generality. In
this paper we expand our work to evaluate how practical
current homomorphic cryptography based on the Smart-
Vercauteren system is for executing arbitrary programs on
untrusted resources. For this we present the implementa-
tion of a method to compute non-linear secret programs on
an untrusted resource using encrypted circuits embedded
in an encrypted virtual machine. We successively show
how a processor architecture using encrypted circuits can
be implemented so it can support read and write memory
access, dynamic parameters and non-linear programs that
render branch-decisions at runtime. The system comprises
the runtime environment for program execution and an
assembler to generate the encrypted machine code. We
present performance evaluation of the sub-components
as well as the complete system. The system represents a
flexible prototype for homomorphic program execution in
software and system architecture.

I. Introduction

Remote execution of programs and remote data
storage are important aspects of todays IT landscape,
in particular due to the boom of Cloud computing.
During transport and storage both programs and data
can be stored in encrypted form to prevent theft
and/or manipulation. However, during execution both
the program and data must be decrypted. This means,
that programs, algorithms and data cannot be properly
protected when executed on a remote resource and are
entirely under control of the resource owner. Recent
fully homomorphic encryption schemes address the
problem of computing on encrypted data by providing
addition and multiplication of encrypted bit represen-
tations. This allows for a theoretical approach to en-
crypted arithmetics with arbitrary precision when op-
erating on composite numbers that consist of columns
of such encrypted bits. Also circuits can be repre-

sented when mapping the homomorphic operations to
boolean gate functions. Even though it is well known,
that integer arithmetics can simulate boolean circuits
(Gentry explicitly mentioned this fact in [5]) most
approaches to transform algorithms into circuits only
encrypt the data and model the program flow in a
sequence of native commands for the target platform.
This means, that the algorithm itself is disclosed.
Furthermore the existing frameworks that generate
encrypted circuits, like [12] can only assemble linear
circuits that are executed in one single pass. Recent ap-
proaches to combine garbled circuits with homomor-
phic cryptography [6] do not sufficiently address this
problem. This paper puts an emphasis on investigating
the practical potential of a universal program execution
model rather than minimized and specialized circuits.
One of our main aims in this paper is to put some
concrete performance context to the hype surrounding
arbitrary secret program execution which is sometimes
touted as the silver bullet for Cloud computing secu-
rity. In previous work [2] we showed how in theory
arbitrary program executing is possible and sufficiently
expressive to be useful for real world problems. Here
we expand on this work showing how these building
blocks can be implemented and put together using the
fully-homomorphic Smart-Vercauteren crypto-system
to create an encrypted virtual machine that is able
to execute arbitrary code for the defined machine
model. We evaluate this concrete implementation and
show the current performance limitations. The paper
structure is as follows: related work and the state-of-
the-art is discussed in section II. Section III introduces
the approach of encrypting circuits using homomor-
phically encrypted bits and gate representations. We
describe the processor primitives and discuss details
that have to be considered for implementation. Some
details of our working implementation of the Smart-
Vercauteren cryptosystem are presented in Section IV.
A brief overview of open issues and future work is
given in Section V. Section VI concludes the paper.

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.174

375

II. Related Work
Since the breakthrough work of Gentry [5], a number

of similar approaches to fully homomorphic encryp-
tion appeared, like Smart et al. [15] or van Dijk et al.
[17], that share the basic idea of bootstrapping a fully
homomorphic encryption (FHE) scheme from a depth-
limited somewhat homomorphic scheme (SHE). Due to
the computational overhead of current FHE schemes,
the question arises, if the underlying SHE schemes
can also be used for more practical homomorphic
encryption. Recent proposals, like Lauter et al. [13]
follow this approach. However, the fully homomorphic
encryption is still subject to progress in terms of new
considerations of hardness assumptions (Stéhle et al.
[16]), conceptual simplicity (Coron et al. [3]) or yet
different mathematical basics (Brakerski et al. [1]).

There are different paradigms for secure delegation
of computation like secure function evaluation (SFE)
mostly based on Yao’s Garbled Circuits [18] and ex-
tensions by Malkhi et al. [12] or Kolesnikov et al.
[11]. Garbled circuits have also been combined with
homomorphic encryption by Kolesnikov et al. [10] and
Gentry et al. [6] to overcome their inherent disadvan-
tage of of being limited to static one-pass boolean
circuits.

A theoretical approach to achieve privacy of memory
access patterns and algorithm execution in a special
type of Turing Machines is the Oblivious Random
Access Machine (ORAM) by Goldreich et al. [7] [8].
There are recent proposals to reduce the complexity of
ORAMs by Pinkas et al. [14] and further developments
towards practical applications by Damgård et al. [4]
and Goodrich et al. [9].

III. Construction of an Encrypted System
Our objective is to construct an encrypted machine

model which has the same properties as a conventional
microprocessor. In particular, the encrypted CPU is
required to hide the confidential functionality of the
executed software. Additionally, the CPU must be
able to handle any program flow, including loops and
branches. That means, that no loop-unfolding or code
multiplication for case handling is needed. Also impor-
tant to mention is the demand to provide programmers
with an environment that a priori is encrypted and
does not require crypto-API calls entangled in business
logic to provide security.

We will develop the machine step-by-step by
first defining the building blocks of the model. We
will then identify the interfaces needed for efficient
operation between the components and eventually
assemble the pieces to build the target system. For
every component we provide performance figures for
different encryption key sizes and model parameters.

The security parameter λ in the performance tables
and other related parameters of the Smart-Vercauteren
key generator are described in Section IV.

Notation. For the definition of interfaces we use the
following notation: characters (a) and strings (read)
denote a single bit value whereas overlined characters
(a) and strings (reg) denote a bitvector. Component
names come as strings in caps.

The construction of the system is divided into three
main blocks:
• Memory access
• Arithmetic-logical unit
• Control unit
As we will show, all of these components can be

implemented applying binary demultiplexers (short
demux). A demux is essentially a binary selector where
the request contains the n-bit address of an item in a
column of 2n items.

A. Encrypted Memory Access

Memory access is one of the key components of the
encrypted system. This is the part of the system that
takes most of the evaluation time in the sequential
circuit simulation. In fact, the evaluation time is at
least1 linear in the size of the memory. The output bit of
this single bit memory-column with two address lines
can be calculated as

c = ((a0 + 1′) · (a1 + 1′) ·m0) ◦ (a0 · (a1 + 1′) ·m1)
◦((a0 + 1′) · a1 ·m2) ◦ (a0 · a1 ·m3)

(1)

Notation. For the transformation we replace the
bits by encrypted representations and the boolean
operations AND ∧ and XOR ⊕ by their arithmetic
equivalents mod 2 (multiplication and addition). The
boolean OR ∨ is replaced by the composite operation
(a + b) + (a · b) and denoted by ◦. The addition of an
encrypted 1’ is equivalent to the boolean negation.

To access the memory, we iterate over all memory
addresses and evaluate the switching function (1).
A term of the form (a0 + 1′) · (a1 + 1′) in Eq. 1 is
equivalent to a row select signal in DRAM technology.
It results in a 1 if the current row is selected by the
request, 0 otherwise and multiplied with the memory
content of the row yields the result for that row. Since
the circuit selects at most one address at a time, we can

1the number of required gates is linear in the size of the memory,
whereas the simulation time for larger circuits increases polynomi-
ally due to the underlying encryption (see Table I)

376

simplify the function by replacing the OR-operations
by XORs.

With this circuit we are able to access encrypted
memory providing an encrypted address to the circuit,
such that the access procedure reveals neither memory
address, nor memory content. Assuming that a prob-
abilistic cryptosystem provides different cipher repre-
sentations for equivalent plaintext, we can observe that
accessing memory with a different representation of
an equivalent plaintext address results in a different
cipher representation of the accessed memory content.

To assign a memory cell m a new value during
a write operation, this new value representation is
passed in a register reg to the access function. For
each memory row we generate the new cell value as
mnew = (row ∧ reg) ∨ (¬row ∧ m) with row being the
row select signal as shown above. This assigns the new
bit value reg, if the row is selected (and thus has the
value 1) and the old value m otherwise. The universal
memory access function for the address space A reads

∀a ∈ A : ma ← (rowa ∧ write ∧ reg)∨
(rowa ∧ read ∧ma)∨
(¬rowa ∧ma)

reg ← (rowa ∧ read ∧ma)∨
(rowa ∧ write ∧ reg)∨
(¬rowa ∧ reg)

(2)

Table I shows the performance figures of our imple-
mentation of the access function. The time is measured
as Δclock()

CLOCKS_PER_SEC using the standard functions and
macros from clib. It turns out, that write access is
much faster than read access for larger memory arrays,
because the noise of the memory bits accumulates
in the target register and thus a lot of recrypting is
required. Also notice, that early reads are cheaper than
reads when the system is in tune, i.e. when all of the
bits in the system have a comparable noise.

Memory rows λ = 384 λ = 512 λ = 768 λ = 1024
8 1 / <1 1 / <1 1 / <1 1 / <1
16 4 / <1 4 / <1 5 / <1 5 / <1
32 17 / <1 19 / <1 21 / <1 25 / <1
64 9-18 / 4 9-19 / 4 11-22 / 5 13-25 / 6
128 21-63 / 9 22-68 / 9 25-76 / 11 30-90 / 12
256 51 / 15 53 / 15 62 / 17 71 / 21

Table I
Timings for memory access in sec. (read/write)

The interface for the memory access function MA is

reg← MA(adr, reg, read)

where reg is a register, adr is the accessed memory
address and read is the data direction flag. The
function calls to MA in the control unit do not need to
hide the data direction, because it is obvious. In light
of this, we have implemented the memory access over
a memory array A according to Eq. 2 in two slightly
modified functions as follows:

reg MAr(adr)
{

for(i = 0..ROWS)
{
sel = ROWSELECT(i,adr);
for(j = 0..WORDSIZE)
{

reg.j = (A[i].j * sel)+(reg.j * !sel);
}

}
}

MAw(adr,reg)
{

for(i = 0..ROWS)
{
sel = ROWSELECT(i,adr);
for(j = 0..WORDSIZE)
{

A[i].j = (reg.j * sel)+(A[i].j * !sel);
}

}
}

where | denotes the composite OR-operation and
X.y represents the y-th bit of the word X. The function
ROWSELECT results in a logic 1, if the encrypted
binary representation of the accessed memory row
adr equals the row-iterator i:

sel ROWSELECT(i,adr)
{

sel=ENCRYPT(1);
for(j = 0..ADRSIZE)
{
if(int.j==1)

temp=ENCRYPT(1)*adr[j];
else

temp=ENCRYPT(1)*!adr[j];

sel=sel*temp;
}

}

B. Encrypted Arithmetic-Logical Unit

The encrypted ALU can also be constructed
applying demux circuits. Like an address in the
memory model, the requestor provides an opcode
which selects the function to be performed over the
two operands. The simplified function that renders the
result of an ALU operation {o0, o1} over the function
set {cand, cadd, cor, cxor} is

c = (cor ∧ (¬o0 ∧¬o1))⊕ (cxor ∧ (o0 ∧¬o1))⊕ (cand ∧
(¬o0 ∧ o1))⊕ (cadd ∧ (o0 ∧ o1))

377

The ALU is modeled to operate on 1-bit operands.
To process machine words of n bits, we couple n
instances of the circuit. Since we have an opera-
tion with dependencies between adjacent operand bits
(the addition), we need to provide state information
(the carry) from one ALU stage to the next one.
This leads to the first basic interface (res, carry) ←
ALU1(opcode, op1, op2, carry). This allows us to imple-
ment an n-bit ALU with a simple ripple-carry adder.
There are much more efficient adder variants, but on
the other hand these adders need much more gates to
implement. In a hardware design, the gates of a circuit
are switched almost in parallel, but it’s worth to recall
that we work with a sequential circuit simulation. That
means that the time to evaluate a circuit depends on
the number of gates.

The ripple carry n-bit ALU with the extended
interface (res, carry) ← ALU(opcode, op1, op2, carry)
can be easily realized by iterating with the ALU1
implementation over the operands from LSB to MSB.

(res,carry) ALU(opcode,op1,op2,carry)
{

for(i = 0..n) //little endian operands
{
(res[i],carry)=ALU1(opcode,op1[i],op2[i],carry);

}
}

The performance figures for the ALU implementa-
tion are depicted in Table II.

Operand size λ = 384 λ = 512 λ = 768 λ = 1024
8 bits 0.07 s 0.08 s 0.09 s 0.1s
16 bits 0.14 s 0.16 s 0.19 s 0.22 s
32 bits 0.28 s 0.32 s 0.38 s 0.45 s

Table II
ALU timings

C. Encrypted Branching (the control unit)

The control unit is the most important part of our
implementation. It is the glue in the system which
interconnects the other components and controls data
and program flow. The CU is a state machine and
itself is controlled by the program code which contains
opcodes and operands. The CU reads a memory word
and determines the function it is required to perform
by passing the opcode to the decoder unit. The decoder
parses the opcode and activates the corresponding
functional circuits that render the correct output. This
output is twofold: on the one hand the CU generates
an arithmetic or logic result of an operation over one
or two operands, on the other hand it computes the
memory address of the next command to be executed.
This program flow is controlled by the state of the

machine, specifically the accumulator register, the pro-
gram counter and the flags: alternative program flow
and decisions are typically determined according to
events like an addition carry of a zero-result of an
arithmetic operation.

CONTROL()
{
register ac = 0; //accumulator
register pc = 0; //program counter
flag carry = 0;
flag zero = 0;
extern flag brk = 0;

while(!brk)
{

temp = MAr(pc); //immediate addressing
opi = GETOPERAND(temp);
cmd = GETOPCODE(temp);

temp2 = MAr(opi); //absolute addressing
opa = GETOPERAND(temp2);

//ALU operations
(ac_new_i,carry_new_i) = ALU(0,ac,opi); //imm
(ac_new_a,carry_new_a) = ALU(0,ac,opa); //abs

//LOAD
ac_new_li = opi; //imm
ac_new_la = opa; //abs

//STORE
mem_new = ((ac & cmd==ST) | (opa & cmd!=ST))
MAw(opi,mem_new);

//UPDATE AC
ac = (ac_new_i & cmd in{OR,XOR,AND,ADD}) |

(ac_new_a &cmd in{ORa,XORa,ANDa,ADDa} |
(ac_new_li & cmd==L) |
(ac_new_la & cmd==La);

//UPDATE FLAGS
carry = (carry_new_i & cmd==ADD) |

(carry_new_a & cmd==ADDa);
zero = (zero_new_i & cmd in{{OR,XOR,AND,ADD}) |

(zero_new_a & cmd in{ORa,XORa,ANDa,ADDa})|
(zero_new_li & cmd==L)|
(zero_new_la & cmd==La);

//JUMP & BRANCH
pc = ((opi & cmd==JMP) |

(opi & cmd==BCC && carry==0) |
(opi & cmd==BZ && zero==1) |
(pc+1 & cmd notin{JMP,BCC,BZ}));

}
}

The control unit uses the auxiliary circuits
GETOPERAND(word) and GETOPCODE(word)
to divide a memory word into data and an opcode.
This combined von-Neuman/Harvard architecture
makes it easy to load a complete command in a single
memory access As shown in the pseudo-code of the
control unit, every machine cycle accesses the memory
array 3 times to achieve obliviousness in the control
flow:

• the first operation reads the word opi at the pro-
gram counter pc

• the operand of the fetched word is a potential
address, so the content of this address is also
fetched as opa

378

Opcode Mnemonic Description
0/ 8 OR / ORa logical or
1/ 9 XOR / XORa logical xor
2 / a AND / ANDa logical and
3 / b ADD / ADDa logical add
4 / c L / La load register
5 ST store register
6 JMP unconditional jump
7 BCC branch if carry clear
d BZ branch if zero

Table III
Instruction set

Memory rows λ = 384 λ = 512 λ = 768 λ = 1024
8 5 s 5 s 6 s 7 s
16 11 s 12 s 14 s 16 s
32 39 s 42 s 48 s 55 s
64 35 s 37 s 42 s 49 s
128 97 s 104 s 117 s 137 s
256 119 s 123 s 144 s 166 s

Table IV
CPU timings (one machine cycle)

• the opi operand is also a potential store address
for the reg or the opa value

The performance of the control unit is the sum of all
components that get involved in a machine cycle. The
timing figures for one cycle are depicted in the short
Table IV.

IV. Smart-Vercauteren Homomorphic Library
Implementation

In this section we present our implementation of
the fully homomorphic Smart and Vercauteren cryp-
tosystem which we use as a basis for our approach.
We needed to make some small modifications since
our original implementation based on [15] and [5]
was not stable enough for arbitrarily deep circuits
and produced false results. To enable correct operation
we modified the recrypt operation, specifically we
improved the circuit to calculate the Hamming weights
to make it shallower. However, this modification does
not weaken the security of the cryptosystem compared
to the original, because the recrypt operates under the
public key only and thus cannot do other things, any
attacker in possession of the public key could also
do. The following Section presents the details of our
implementation of the Smart-Vercauteren system.

A. Somewhat Homomorphic Scheme

In this subsection we present a somewhat homo-
morphic encryption scheme as defined by Smart et al.
Decryption works only as long as the cypher text noise,
more precisely the coefficients of the C(x), is within

certain bounds r. These bounds depend mainly on the
parameter N. For our implementation and choice of
parameters we get r = 2ν/(2

√
N) = 2384

16 , see [15] for a
more generic calculation.

Besides this restriction, the general idea is the same
as with the fully homomorphic scheme. G(x) generates
an ideal p = (G(x)) in Z[x]/F[x], along with the two
element description p = 〈p, x− α〉 (which is used in the
encrypt function). This gives us the homomorphism

ϕpi : Z[x]→ (Z[x]/F(x))/p
C(x) �→ C(α) mod p

(3)

which we will use for the encryption.
1) Key generation:

Notation: We write polynomials in uppercase ro-
man letters. For a given polynomial G(x) of degree
n, (g0, . . . , gn) denote the coefficients so that G(x) =
∑n

i=0 gixi.
1: keygen(pk, sk)
2: {
3: F(x) = xn + 1 // monic, irreducible of degree n
4: do {
5: G(x) = random polynomial in Beven

∞,n (μ)
6: ++ g0 // make the constant coefficient odd
7: p = fmpz_poly_resultant(G(x), F(x))
8: } while p is not prime
9: D(x) = F_mpz_mod_poly_gcd_euclidean(G(x), F(x))

10: α = −d0 // α = root of D(x)
11: (r, Z(x), t) = fmpz_poly_xgcd(G(x), F(x))
12: pk.p = p; pk.α = α // pk, sk are simply structs
13: sk.p = p; sk.B = z0 mod 2p
14: }

Discussion:
l. 3 xn + 1 is always a safe choice for a monic,

irreducible polynomial of degree n as it has
no roots in Z[x].

l. 5 [15] defines

B∞,n(r) :=

{
n−1
∑
i=0

aixi : ai ∈ [−r, r]

}
.

Analogously, we define

Beven
∞,n (r) :=

{
n−1
∑
i=0

2aixi : ai ∈
[
− r
2
,

r
2

]}
.

In the algorithm, we double randomly choose
coefficients in [− μ

2 ,
μ
2].

l. 8 the Miller-Rabin prime number test is used
here. p �= 0 prime implies that F(x) and G(x)
are coprime and further that G(x) is irre-
ducible (F(x) is irreducible). G(x) generates
a principal ideal p in Z[x]/F(x).

l. 9 the GCD-algorithm works on polynomials
modulo p. We find the two element represen-
tation 〈p, x − α〉 of p with p being the norm

379

of p and α a root of F(x) mod p. The root of
D(x) is also a root of F(x) and G(x).

l. 11 the ext. GCD-algorithm sets the output so that
Z(x) · G(x) = p mod F(x). Here we generate
the subsecret key. The decryption algorithm
requires us to calculate 1

G(x) =
Z(x)

p . We only
need to round to the nearest integer, so only
z0 is relevant here as the subsecret key.

2) Encrypt, Decrypt, Add, Mult: The code for encrypt,
decrypt, add and mult largely resembles the pseu-
docode given in [15] as all of the operations translate
well to GMP calls.

In the encryption function we generate a polynomial
C(x) with the parity of the constant coefficient depend-
ing on the message to be encrypted. Then we use eq.
3 to transform the polynomial to the crypto space by
evaluating C(α) mod p with fmpz_poly_evaluate().

After an addition, if the input ciphertexts were
bound by b1 and b2, the result will be bound by b1 + b2
(the coefficients simply add up). After a multiplication
however, the result will be bound by b1 + b2 + b1 · b2.
In the following we will examine how many multi-
plications are possible while the cipher text is still
decryptable. After d multiplications, the output will be
bound by μ2d

= 42
d
.

42
d
=

2384

16
⇔ 2d = 190⇔ d = �log2190� = 7 (4)

This will be enough for our recrypt() to work as well
as leaving some operations for homomorphic gates.

B. Fully Homomorphic Scheme

In this section we present a version of the decryption
algorithm consisting only of xor and and-gates. This
allows us to apply the decryption to a ciphertext,
returning a cleaner version. For this recrypt to be
effective, the depth of the circuit has to be shallow
enough. We present a minimal rounding function to
account for this.

1) Key generation revised: In addition to B, α and p
constructed in the somewhat homomorphic version of
keygen, we now also have to construct a hint {ci, Bi}s1

i=1
so that ∑s1

i=1 decrypt(ci)Bi = B. Since we rely on hiding
the value of B in the array Bi the security of this hint
depends on the size of Bi. The security of the hint can
be reduced to the Subset-Sum problem.
1: keygen() // continued . . .
2: B∗ = � B

S2
� // Step 1: Distribute

3: for (i = 0; i < S2; i ++) {
4: pk.Bi = B∗
5: pk.ci = 1
6: }
7: for (i = S2; i < S1; i ++) {

8: pk.Bi = random in [−p, p]
9: pk.ci = 0

10: }
11: for (i = 0; i < S2; i ++) { // Step 2: Add/Sub at

random
12: r+ = random in [0, p− 1]
13: r− = −r+
14: add and subtract r+ and r− from random Bj
15: }
16: for (i = 0; i < S1; i ++ { // Step 3: Shuffle array
17: j = random in [0, S1 − 1]
18: swap pk.Bi and pk.Bj
19: swap pk.ci and pk.cj
20: }

pk.B � B
4 � . . . � B

4 � B− 4� B
4 � rand . . . rand

pk.c 0 0 0 1 1

Table V
Initial distribution of the hint

Discussion:
Step 1 In the distribution step the array is initialized

as shown in table V.
Step 2 Addition and subtraction of random values

only operate on the first S2 (= 5). In each step
the invariant ∑s1

i=1 decrypt(ci)Bi = B holds.
Step 3 In order to randomize the hint, we finally

shuffle the array.
2) Recrypt: The purpose of the recrypt() function is

to generate a cleaner ciphertext from a dirty one with
the same cleartext value. The homomorphic operations
add and mult add to the dirtyness of the ciphertext,
making it eventually unrecoverable. Therefore, without
a recrypt() function, we can only compute circuits of a
fixed depth. Beyond that, the results are not correctly
decryptable. The general idea of this function is to
decrypt the ciphertext in the cryptospace using homo-
morphic operations. Recall that the decrypt function
computes

(
c−

⌊
B

c
p

⌉)
≡2

(
c−

⌊
∑

i
ciBi

c
p

⌉)
≡2(

c−
⌊
∑

i
ci(Bi · c mod 2p)/p

⌉)

The right part of the equation we can compute us-
ing only the public key and the hint constructed in
subsection IV-B1. But since the ci’s are encrypted, the
final output will also still be encrypted. The result is a
cleaner encryption of c.
1: for (i = 0; i < S1; i ++) {
2: d = (Bi · c mod 2p) // Note that d ∈ [0, 2)

380

3: for (j = 0; j < T; j ++) {
4: Cij = encrypt(�d�) ·ci mod p
5: d = (d− �d�) · 2 // conv. frac. base 2
6: }
7: }

After running the algorithm above, each row of the
matrix (Cij) holds a binary representation of (Bi ·
c mod 2p) with T− 1 bits of precision in the ciphertext.
As an optimization in line 4 we can check wether �d�
is zero and then use either ci or encrypt(0). This saves
an additional multiplication and provides a cleaner
ciphertext matrix to start with. Next, we sum up
individual rows with a circuit as shallow as possible.
Therefore, the addition of the rows is split up in
separate steps:

1) Calculate Hamming weights of the rows using
symmetric polynomials as suggested by [15].
With this approach we get a much shallower
circuit cmp. using half- and full-adders, since the
poly ek(X1, . . . , Xn) = ∑1≤j1<j2<...<jk≤n Xj1 . . . Xjk
directly gives the k-th bit of the Hamming weight
of the input.

2) Shift and merge the Hamming weights according
to significance of the column. Note that we don’t
need any circuit gates here as we just rewire.

3) Apply carry-save adder to three rows at a time
until there are only two rows left. This allows for
a constant circuit depth.

4) Finally, do one ripple-carry addition which has a
linear circuit depth with respect to the length of
the rows.

After this last step, we have reduced the matrix to
one column holding a fixed precision floating point
representation of ∑i ci(Bi · c mod 2p)/p.

3) A shallower rounding function: To produce the
cleaner encryption of the input, [15] suggests a round-
ing using the last two floating point bits. However in
our implementation this resulted in a circuit that was
overall too deep to compute the correct value.

We therefore suggest an alternative rounding using
just the last bit. By doing so we are saving additional
circuit depth while still being able to correctly “clean”
the value. Effectively we are able to reduce the depth
by two multiplications.
The output of tour rounding is then given by(

c−
⌊
∑

i
ci(Bi · c mod 2p)/p

⌉)
= (c + e0 + e1) mod 2 .

C. Implementation parameters
For the implementation of our system2, we used

different security parameters λ. It defines the cipher

2available on the web: http://www.hcrypt.com

size and is the upper bound μ for picking a random
polynomial in the Smart-Vercauteren key generator.
The public key contains a decryption hint that is split
into S2 addends and randomly distributed over an
array of size S1. We use a constant configuration of
S1 = 8 and S2 = 5 for all experiments which leads to
the key file sizes summarized in Table VI.

key λ = 384 λ = 512 λ = 768 λ = 1024
secret 1.8 2.5 3.7 4.9
public 16.7 22.3 33.3 44.5

Table VI
Key file sizes (kB)

To track the cumulative noise of ciphertexts and
to efficiently trigger the recrypt operation, we attach
a numeric noise measure to every encrypted bit. A
multiplication result (an AND operation) inherits the
sum of the two operand’s noises, additions (XORs) are
free in our model. Before a multiplication the sum of
the two noises is checked and if the sum exceeds the
value 7 (see Eq. 4) then the noisier value is recrypted.

V. Open Issues & Future Work

This implementation is still at an early stage, how-
ever, there are many possible applications, including
a couple of older problems, like the computation of
a common function between multiple parties, where
every party injects its own data into the system, calcu-
lates an intermediate result and forwards the resulting
machine state to the next participant.
The environment presented in this paper is still limited
in performance which makes it currently suitable for
small problem sizes and concept studies. These results
put some quantitate context on the current limitations
of homomorphic program execution and gives a clearer
idea of the a scale of problems which can be solved
already. Undoubtably performance optimization is one
of the main areas of future work. By extending the
capabilities of our solution to bilaterally interact with
the host system, we will be able to perform calculations
on portions of secret data or secret algorithms, that
are part of a larger system. It is possible to inject
encrypted data into the encrypted environment, which
is sufficient to receive process data from outside the
cipher-space. However, the performance benefits this
can bring will also induces some problems, like the
correctness and consistency of the encrypted code and
data.

We are currently determining the requirements for
and limitations of a hardware implementation of the
encrypted machine. The main challenges will be the
memory access with super-wide buses (transferring

381

the encrypted addresses and data) and the hardware
implementation of the recrypt procedure.

VI. Summary
In this paper we presented the implementation and

performance evaluation of a method to perform the
execution of arbitrary encrypted non-linear programs,
operating on encrypted data. In contrast to other so-
lutions, the code, as well as the processed data is
held entirely in the cipher-space, but still remains
dynamic and can be provided with encrypted data
after having been transmitted to the executing host. We
have described a method to represent circuits by means
of homomorphically encrypted arithmetics. Applying
the basic logic function representations, we showed,
how to build different microprocessor primitives like
memory-access logic and arithmetic operations which
can operate in the cipher-space. We then developed
a simple CPU- and system-model and presented the
reference implementation of our model on top of our
implementation of the Smart-Vercauteren encryption
scheme. An analysis determined the relationship be-
tween our system model and the underlying encryp-
tion scheme. We provided performance figures for dif-
ferent key sizes and showed that while homomorphic
cryptography will not be saving Cloud computing any
time soon, a system such as presented in this paper is
suitable to act as a sound basis for further empirical
investigation of applied homomorphic encryption.

References

[1] Zvika Brakerski and Vinod Vaikuntanathan. Fully ho-
momorphic encryption from ring-lwe and security for
key dependent messages. In Advances in Cryptology -
CRYPTO 2011, LNCS. 2011.

[2] Michael Brenner, Jan Wiebelitz, Gabriele von Voigt, and
Matthew Smith. Secret program execution in the cloud
applying homomorphic encryption. In Proceedings of the
5th IEEE International Conference on Digital Ecosystems,
DEST’11. IEEE, 2011.

[3] Jean-Sébastien Coron, Avradip Mandal, David Nac-
cache, and Mehdi Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In
Advances in Cryptology - CRYPTO 2011, LNCS. 2011.

[4] Ivan Damgård, Sigurd Meldgaard, and Jesper Nielsen.
Perfectly secure oblivious ram without random oracles.
In Theory of Cryptography, LNCS. 2011.

[5] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09. ACM, 2009.

[6] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-
hop homomorphic encryption and rerandomizable yao
circuits. In Advances in Cryptology - CRYPTO 2010,
LNCS. 2010.

[7] Oded Goldreich. Towards a theory of software protec-
tion and simulation by oblivious rams. In Proceedings
of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, New York, NY, USA, 1987. ACM.

[8] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. J. ACM, 43:431–
473, May 1996.

[9] Michael Goodrich and Michael Mitzenmacher. Privacy-
preserving access of outsourced data via oblivious ram
simulation. In Automata, Languages and Programming,
LNCS. 2011.

[10] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. How to combine homomorphic
encryption and garbled circuits improved circuits and
computing the minimum distance efficiently.

[11] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. Improved garbled circuit building
blocks and applications to auctions and computing
minima. In Cryptology and Network Security, LNCS.
2009.

[12] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron
Sella. Fairplay - a secure two-party computation system.
In Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13, SSYM’04. USENIX Association,
2004.

[13] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, CCSW ’11, New York, NY, USA, 2011.
ACM.

[14] Benny Pinkas and Tzachy Reinman. Oblivious ram
revisited. In Advances in Cryptology - CRYPTO 2010,
LNCS. 2010.

[15] N. Smart and F. Vercauteren. Fully homomorphic en-
cryption with relatively small key and ciphertext sizes.
In Public Key Cryptography, PKC 2010, volume 6056 of
LNCS, pages 420–443. Springer Berlin / Heidelberg,
2010.

[16] Damien Stehlé and Ron Steinfeld. Faster fully ho-
momorphic encryption. In Advances in Cryptology -
ASIACRYPT 2010, LNCS. 2010.

[17] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over
the integers. In Advances in Cryptology - EUROCRYPT
2010, LNCS. 2010.

[18] Andrew C.C. Yao. Protocols for secure computations.
In SFCS ’82: Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science. IEEE Computer Society,
Washington, DC, USA, 1982.

382

