
POSTER: An Implementation of the Fully Homomorphic
Smart-Vercauteren Crypto-System

Henning Perl, Michael Brenner and Matthew Smith
Distributed Computing Security Group
Gottfried Wilhelm Leibniz Universität

Hannover, Germany
{brenner,perl,smith}@dcsec.uni-hannover.de

ABSTRACT
Since the discovery of a fully homomorphic cryptographic
scheme by Gentry, a number of different schemes have been
proposed that apply the bootstrap technique of Gentry’s
original approach. However, to date no implementation of
fully homomorphic encryption has been publicly released.
This poster presents a working implementation of the Smart-
Vercauteren scheme that will be freely available and gives
substantial implementation hints.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems

General Terms
Security

Keywords
homomorphic encryption, implementation

1. LIBRARY IMPLEMENTATION
In this section we present the implementation of the Smart-

Vercauteren homomorphic scheme. We modified the recrypt
operation, specifically we improved the circuit to calculate
the Hamming weights to make it shallower.

Helper Libraries
For large integers, the GNU Multiple Precision Arithmetic
Library (GMP) was used. Much of the number theoretical
calculation additionally utilizes the Fast Library for Number
Theory (FLINT), version 1.6.

1.1 Somewhat Homomorphic Scheme
In the somewhat homomorphic encryption scheme as de-

fined by Smart et al. decryption works only as long as the
cypher text noise (more precisely the coefficients of the C(x))
is within certain bounds r. These bounds depend mainly on
the parameter N. For our implementation and choice of pa-
rameters we get r = 2ν/(2

√
N) = 2384

16 , see [2] for a more
generic calculation. Besides this restriction, the general idea
is the same as with the fully homomophic scheme. G(x)
generates an ideal p = (G(x)) in Z[x]/F[x], along with the

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

dual element description p = ⟨p, x − α⟩ (which is used in the
encrypt function). This gives us the homomorphism

φpi : Z[x] → (Z[x]/F(x))/p
C(x) 7→ C(α) mod p

(1)

which we will use for the encryption.

1.1.1 Key generation

Notation.
We write polynomials in uppercase roman letters. For a

given polynomial G(x) of degree n, (g0, . . . , gn) denote the
coefficients such that G(x) = ∑n

i=0 gixi.
1: keygen(pk, sk)
2: {
3: F(x) = xn + 1 // monic, irreducible of degree n
4: do {
5: G(x) = random polynomial in Beven

∞,n (µ)
6: ++ g0 // make the constant coefficient odd
7: p = fmpz poly resultant(G(x), F(x))
8: } while p is not prime
9: D(x) = F mpz mod poly gcd euclidean(G(x), F(x))

10: α = −d0 // α = root of D(x)
11: (r, Z(x), t) = fmpz poly xgcd(G(x), F(x))
12: pk.p = p; pk.α = α // pk, sk are simply structs
13: sk.p = p; sk.B = z0 mod 2p
14: }

Discussion.

Line 3 xn + 1 is always a safe choice for a monic, irreducible
polynomial of degree n as it has no roots in Z[x].

Line 5 [2] defines

B∞,n(r) :=

{
n−1

∑
i=0

aix
i : ai ∈ [−r, r]

}
.

Analogously, we define

Beven
∞,n (r) :=

{
n−1

∑
i=0

2aixi : ai ∈
[
− r

2
,

r
2

]}
.

In the algorithm, we randomly choose coefficients in
[− µ

2 , µ
2] and then multiply them by 2.

Line 8 the Miller-Rabin prime number test is used here. p ̸=
0 prime implies that F(x) and G(x) are coprime and
further that G(x) is irreducible (as we already know

that F(x) is irreducible). Therefore G(x) generates a
principal ideal p in Z[x]/F(x).

Line 9 the GCD-algorithm used here is just a variation of
euclids classic algorithm working on polynomials mod-
ulo p. Here, we find the dual element representation
⟨p, x − α⟩ of p with p being the norm of p and α a root
of F(x) mod p. The root of D(x), of course, is also a
root of F(x) and G(x).

Line 11 the extended GCD-algorithm sets the output such
that Z(x) · G(x) = p mod F(x). Here we generate the
subsecret key. The decryption algorithm requires us to
calculate 1

G(x) = Z(x)
p . In the concrete implementation

of the decrypt function we only need to round to the
nearest integer. Therefore, only z0 is relevant here as
the subsecret key.

1.1.2 Encrypt, Decrypt, Add, Mult
The code for encrypt, decrypt, add and mult largely re-

sembles the pseudocode given in [2] as all of the operations
translate well to GMP calls. In the encryption function we
generate a polynomial C(x) with the parity of the constant
coefficient depending on the message to be encrypted. Then
we use eq. 1 to transform the polynomial to the crypto space
by evaluating C(α) mod p with fmpz poly evaluate(). After
an addition, if the input cyphertexts were bound by b1 and
b2, the result will be bound by b1 + b2 (the coefficients sim-
ply add up). After a multiplication however, the result will
be bound by b1 + b2 + b1 · b2. In the following we will exam-
ine how many multiplications are possible while the cypher
text is still decryptable. After d multiplications, the output
will be bound by µ2d

= 42d
.

42d
=

2384

16
⇔ 2d = 190 ⇔ d = ⌊log2190⌋ = 7

This will be enough for our recrypt() to work as well as leav-
ing some operations for homomorphic gates.

1.2 Fully Homomorphic Scheme
In this section we present a version of the decryption al-

gorithm consisting only of xor and and-gates. This allows us
to apply the decryption to a cyphertext, returning a cleaner
version. For this recrypt to be effective, the depth of the
circuit has to be shallow enough. We present a minimal
rounding function to account for this.

1.2.1 Key generation revised
In addition to B, α and p constructed in the somewhat

homomorphic version of the keygen, we now also have to
construct a hint {ci, Bi}s1

i=1 such that ∑s1
i=1 decrypt(ci)Bi = B.

Since we rely on hiding the value of B in the array Bi the
security of this hint depends largely on the size of Bi. We
modified our algorithm to account for this. The security of
the hint can then be reduced to the Subset-Sum problem. We
call the tuple {|α| , S1, S2} the key geometry.
1: keygen() // continued . . .
2: B∗ = ⌊ B

S2
⌋ // Step 1: Distribute

3: for (i = 0; i < S2; i ++) {
4: pk.Bi = B∗

5: pk.ci = 1
6: }

7: for (i = S2; i < S1; i ++) {
8: pk.Bi = random in [−p, p]
9: pk.ci = 0

10: }
11: for (i = 0; i < S2; i ++) { // Step 2: Add/Subtract

values randomly
12: r+ = random in [0, p − 1]
13: r− = −r+
14: add and subtract r+ and r− from random Bj
15: }
16: for (i = 0; i < S1; i ++ { // Step 3: Shuffle array
17: j = random in [0, S1 − 1]
18: swap pk.Bi and pk.Bj
19: swap pk.ci and pk.cj
20: }

pk.B ⌊ B
4 ⌋ . . . ⌊ B

4 ⌋ B − 4⌊ B
4 ⌋ rand . . . rand

pk.c 0 0 0 1 1

Table 1: Initial distribution of the hint

Discussion:.

Step 1 In the distribution step the array is initialized as de-
picted in table 1.

Step 2 Addition and subtraction of random values only op-
erates on the first S2 (= 5). Note that in each step the
invariant ∑s1

i=1 decrypt(ci)Bi = B holds.

Step 3 In order to randomize the hint, we finally shuffle the
array.

1.2.2 Recrypt
The purpose of the recrypt() function is to generate a “clean-

er” cryptotext from a “dirty” one with the same cleartext
value. The homomorphic operations add and mult add to
the dirtyness of the cryptotext, making it eventually unre-
coverable.

Therefore, without a recrypt() function, we can only com-
pute circuits of a fixed depth. Beyond that, the results are
not correctly decryptable.

The general idea of this function is to decrypt the cypher-
text in the cryptospace using homomorphic operations. Re-
call that the decrypt function computes(

c −
⌊

B
c
p

⌉)
≡2

(
c −

⌊
∑

i
ciBi

c
p

⌉)
≡2(

c −
⌊
∑

i
ci(Bi · c mod 2p)/p

⌉)
The right part of the equation we can compute using only
the public key and the hint constructed in subsection 1.2.1.
But since the ci’s are encrypted, the final output will also
still be encrypted. The result is a cleaner encryption of c.
1: for (i = 0; i < S1; i ++) {
2: d = (Bi · c mod 2p) // Note that d ∈ [0, 2)
3: for (j = 0; j < T; j ++) {
4: Cij = encrypt(⌊d⌋) ·ci mod p
5: d = (d − ⌊d⌋) · 2 // This converts the fraction

base 2

6: }
7: }

After running the algorithm above, each row of the matrix
(Cij) holds a binary representation of (Bi · c mod 2p) with
T − 1 bits of precision in the cryptotext. As an optimization
in line 4 we can check wether ⌊d⌋ is zero and then use either
ci or encrypt(0). This saves an additional multiplication and
provides a cleaner cryptotext matrix to start with.


..20. 2−1. 2−2. 2−3. 2−4


;



..20.

2−1

.

2−2

.

2−3

.

2−4

.. 

Figure 1: Shifting and merging of the rows

Next, we sum up individual rows with a circuit as shallow
as possible. Therefore, the addition of the rows is split up in
separate steps:

1. Calculate the Hamming weights of the individual rows:
The calculation of the Hamming weight is using (ele-
mentary) symmetric polynomials as suggested by [2].
With this approach we can get a much shallower cir-
cuit than using half- and full-adders, since the polyno-
mial ek(X1, . . . , Xn) = ∑1≤j1<j2<...<jk≤n Xj1 . . . Xjk di-
rectly gives the k-th bit of the Hamming weight of the
input. For a pseudocode see [2, p. 15].

2. Shift and merge the Hamming weights according to
the significance of the column: Once we computed the
Hamming weight of the individual columns, we can
shift and merge the values as shown in fig. 1.2.2. Note
that we don’t need any circuit gates (or homomorphic
operations) here as we just “rewire”.

3. Use a carry-save adder until there are only two rows
left: The carry-save adder is simply a full-adder ap-
plied to three rows at a time. This allows for a constant
circuit depth.

4. Use a ripple-carry adder for the final addition: Finally,
we have to do one ripple-carry addition, which has a
linear circuit depth with respect to the length of the
rows.

After this last step, we have reduced the matrix to one col-
umn holding a fixed precision floating point representation
of ∑i ci(Bi · c mod 2p)/p.

1.2.3 A shallower rounding function
To produce the cleaner encryption of the input, [2] sug-

gests a rounding using the last two floating point bits. How-
ever in our initial implementation this resulted in a circuit
that was overall too deep to compute the correct value. We
suggest an alternative rounding using just the last bit to save
circuit depth while still being able to correctly “clean” the
value. Effectively we are able to reduce the depth by two
multiplications. Table 2 compares our rounding function to
the function proposed in [2].

e0.e1e2 decimal our rounding rounding in [2]

0.00 0.00 0 0
0.01 0.25 1 0
0.10 0.50 1 1
0.11 0.75 1 1
1.00 1.00 1 1
1.01 1.25 0 1
1.10 1.50 0 0
1.11 1.75 0 0

Table 2: Comparison of rounding circuits

The output of the algorithm is then given by(
c −

⌊
∑

i
ci(Bi · c mod 2p)/p

⌉)
= (c + e0 + e1) mod 2 .

Performance.
Due to space constraints, most performance figures for

different key sizes and key configurations are available on
the poster. Table 3 shows basic figures depending on the
key geometry (see 1.2.1).

key geometry key size (kB) keygen (s) recrypt (ms)

384/16/5 1.8/30 17 263
384/32/16 1.8/60 14 307
384/64/16 1.8/120 15 684
2048/64/16 9.6/626 3180 1350
4096/64/16 18/1250 14278 3280

Table 3: Key geometry and performance

Conclusion.
While ([1]) gave some hints to implementing a fully ho-

momorphic scheme, no source code was published and as
was shown above there are significant implementation and
parameter issues. Presenting and discussion these details is
vital to the development of cryptographic systems. This im-
plementation is a step towards making fully homomorphic
encryption available for a broad audience of practitioners.

2. REFERENCES
[1] Craig Gentry, Fully Homomorphic Encryption Using Ideal

Lattices, STOC ’09: Proceedings of the 41st annual ACM
symposium on Theory of computing,
DOI:10.1145/1536414.1536440

[2] Nigel P. Smart and Frederik Vercauteren, Fully
Homomorphic Encryption with Relatively Small Key and
Ciphertext Sizes, Public Key Cryptography - PKC 2010,
Springer 10.1007/978-3-642-13013-7

